Acyl-homoserine lactones can induce virus production in lysogenic bacteria: an alternative paradigm for prophage induction.

نویسندگان

  • Dhritiman Ghosh
  • Krishnakali Roy
  • Kurt E Williamson
  • Sharath Srinivasiah
  • K Eric Wommack
  • Mark Radosevich
چکیده

Prophage typically are induced to a lytic cycle under stressful environmental conditions or when the host's survival is threatened. However, stress-independent, spontaneous induction also occurs in nature and may be cell density dependent, but the in vivo signal(s) that can trigger induction is unknown. In the present study, we report that acyl-homoserine lactones (AHL), the essential signaling molecules of quorum sensing in many gram-negative bacteria, can trigger phage production in soil and groundwater bacteria. This phenomenon also was operative in a lambda lysogen of Escherichia coli. In model coculture systems, we monitored the real-time AHL production from Pseudomonas aeruginosa PAO1 using an AHL bioluminescent sensor and demonstrated that lambda-prophage induction in E. coli was correlated with AHL production. As a working model in E. coli, we show that the induction responses of lambda with AHL remained unaffected when recA was deleted, suggesting that this mechanism does not involve an SOS response. In the same lambda lysogen we also demonstrated that sdiA, the AHL receptor, and rcsA, a positive transcriptional regulator of exopolysaccharide synthesis, are involved in the AHL-mediated induction process. These findings relate viral reproduction to chemical signals associated with high host cell abundance, suggesting an alternative paradigm for prophage induction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermoregulation of N-acyl homoserine lactone-based quorum sensing in the soft rot bacterium Pectobacterium atrosepticum.

The psychrotolerant bacterium Pectobacterium atrosepticum produces four N-acyl homoserine lactones under a wide range of temperatures. Their thermoregulation differs from that of the exoenzyme production, described as being under quorum-sensing control. A mechanism involved in this thermoregulation consists of controlling N-acyl homoserine lactones synthase production at a transcriptional level.

متن کامل

Seasonal variation in lysogeny as depicted by prophage induction in Tampa Bay, Florida.

A seasonal study of the distribution of lysogenic bacteria in Tampa Bay, Florida, was conducted over a 13-month period. Biweekly water samples were collected and either were left unaltered or had the viral population reduced by filtration (pore size, 0.2 micro m) and resuspension in filtered (pore size, 0.2 micro m) water. Virus-reduced and unaltered samples were then treated by adding mitomyci...

متن کامل

N-Acylhomoserine Lactones (AHLs) as Phenotype Control Factors Produced by Gram-Negative Bacteria in Natural Ecosystems

Bacteria are able to sense an increase in cell population density and to respond to it by the induction of a particular set of genes. This mechanism, called quorum sensing, includes in gram-negative bacteria the production and secretion of an acyl homoserine lactone, which diffuses through the cell wall, from the cell to the medium. Bacteria use the quorum sensing mechanism to regulate a variet...

متن کامل

Inter-kingdom signaling: deciphering the language of acyl homoserine lactones.

Bacteria use small secreted chemicals or peptides as auto-inducers to coordinately regulate gene expression within a population in a process called quorum sensing. Quorum sensing controls several important functions in different bacterial species, including the production of virulence factors and biofilm formation in Pseudomonas aeruginosa and bioluminescence in Vibrio fischeri. Many gram-negat...

متن کامل

N-acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens

The implementation of beneficial microorganisms for plant protection has a long history. Many rhizobia bacteria are able to influence the immune system of host plants by inducing resistance towards pathogenic microorganisms. In this report, we present a translational approach in which we demonstrate the resistance-inducing effect of Ensifer meliloti (Sinorhizobium meliloti) on crop plants that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 75 22  شماره 

صفحات  -

تاریخ انتشار 2009